Dual coordinate descent methods for logistic regression and maximum entropy models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

Maximum entropy (Maxent) is useful in natural language processing and many other areas. Iterative scaling (IS) methods are one of the most popular approaches to solve Maxent. With many variants of IS methods, it is difficult to understand them and see the differences. In this paper, we create a general and unified framework for iterative scaling methods. This framework also connects iterative s...

متن کامل

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy

Maximum entropy (Maxent) is useful in many areas. Iterative scaling (IS) methods are one of the most popular approaches to solve Maxent. With many variants of IS methods, it is difficult to understand them and see the differences. In this paper, we create a general and unified framework for IS methods. This framework also connects IS and coordinate descent (CD) methods. Besides, we develop a CD...

متن کامل

The equivalence of logistic regression and maximum entropy models

As our colleague so aptly demonstrated ( http://www.win-vector.com/blog/2011/09/the-simplerderivation-of-logistic-regression/ (link) ) there is one derivation of Logistic Regression that is particularly beautiful. It is not as general as that found in Agresti[Agresti, 1990] (which deals with generalized linear models in their full generality), but gets to the important balance equations very qu...

متن کامل

Distributed Coordinate Descent for L1-regularized Logistic Regression

Solving logistic regression with L1-regularization in distributed settings is an important problem. This problem arises when training dataset is very large and cannot fit the memory of a single machine. We present d-GLMNET, a new algorithm solving logistic regression with L1-regularization in the distributed settings. We empirically show that it is superior over distributed online learning via ...

متن کامل

Maximum entropy, logistic regression, and species abundance

There is considerable debate about the utility of statistical mechanics in predicting diversity patterns in terms of life history traits. Here, I reflect on this debate and show that a community is controlled by the balance of two opposite forces: the entropic part (the natural tendency of the system to be in the configuration with the highest possible entropy) and environmental, ecological and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2010

ISSN: 0885-6125,1573-0565

DOI: 10.1007/s10994-010-5221-8